
U. Priss, S. Polovina, and R. Hill (Eds.): ICCS 2007, LNAI 4604, pp. 460–463, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Helping System Users to Be Smarter by Representing
Logic in Transaction Frame Diagrams

David Cox1 and Simon Polovina2

1 www.flipp-explainers.org

djcox@fuse.net

2 Communication & Computing Research Centre
Faculty of Arts, Computing, Engineering & Sciences

Sheffield Hallam University, UK S1 1WB
s.polovina@shu.ac.uk

Abstract. We identify a lucid way of conveying complex information to users
in a highly visual, easy to follow form. As explanation, we describe several
ideas about system user instructions. Several key ideas are clarified using
diagrams. A direction for exploration is offered, with the view that ICCS
conferees will be aware of a simple, diagrammatic way to explain use of
systems dealing with very complex real world problems.

1 Introduction

The connection between diagrams and logical reasoning is well-established [2]. User
instructions for new systems in health care, science, education, and government, for
example, become unclear when complex choices – like complex traffic intersections -
- appear in single-path text pages rather than in roadmap, diagram form.

Patterns and rules. In contrast, instructions for using complex systems often have
proven clear when presented in two parts: first, as landscape or architectural views of
intersection patterns like baseball diamonds, soccer playing fields, or chess boards --
with, second, ultra-simple rules on moving through the patterns on the playing field or
game board [1]. People are able to deal with extraordinarily many different paths to
reach football goal lines, soccer nets, and baseball home plates. But, in text form,
these myriad lines of possibility are 100% invisible behind the single-line disguise
text always insists on wearing.

System by game. Driving a car is a familiar example of “system by game” [1]. The
game board is the streets and highways on which the car is driven by its driver. The
patterns are formed by the painted lines which define traffic lanes. Sometimes lane
patterns split like logical ors; sometimes they merge at intersections like logical ands.
The driver’s goal is the destination of the trip. The rules are the traffic laws. The
driver is truly reacting to patterns on a game board while applying the rules of the
particular driving game being played. Text can describe patterns but can’t model
them. Diagrams can do both.

 Helping System Users to Be Smarter by Representing Logic 461

2 A Simple Game Board Diagram Example

On the left is an illustrative, content-empty example of a type of
simple game board-like diagram – a type that often has been
applied to real world systems. The site www.flipp-explainers.org
demonstrates that all user instructions can be represented by the
words, “Start at the top, move down, don’t cross vertical lines,

end at the bottom.” In this example, 9 frames form 11 multi-frame user pathways.
Diagrams of this type can handle vast complexity. Figure 1 highlights an example of

the MS-DOS operating system’s DIR command that shows 9,700,000 process variations.
(At www.jfsowa.com/figs/flippdir.gif it is reproduced online; we acknowledge the
support given to us by John F. Sowa in general with our work [7].)

Fig. 1. DOS DIR command; not as straightforward as you might think...

Some actual system applications have used many more scenarios. A new
manufacturing plant’s 26 departmental system diagrams together represented one
coherent system at startup. The number of diagrammed scenarios was – probably well

462 D. Cox and S. Polovina

into the billions [1]. Even relatively simple applications have been seen by users as
complex. An actual case study involving a tax calculation system with only eight
scenarios had nonetheless been considered even by teachers to be quite complex [1].

3 Some Suggestions

Whilst [1] explains how to develop these panoramas of all scenarios in any given
system, the following suggestions are worth noting:

Create many expectations; deliver on all of them. Build confident expectations for
system users. A way to do this is by diagramming for users all scenario patterns in
any system on interest, not just those that answer specific situations. This philosophy
has proven very helpful in quick teaming of people who did not know each other.
Hundreds of temporary creative problem solving teams welcomed being given
abundant clear expectations about, for example, the team processes and tools before
they worked together [1].

Represent user logic without language, symbols, or formulas. They create
complexity. While the simple framework diagrams described above clarify logic
relationships, the information inside the frameworks – the content -- can be in any
form, any languages, any symbols, any formulas, any logic, any images, etc. Luckily,
a given diagram holds content correctly even in different languages and forms. Logic
is form and connection, not language, not symbols, not content [1].

Use diagram types that are both logical and convenient. Whilst Flow chart
diagrams are perhaps the most popular means of describing complex processes, they
suffer in that, among other things, they:

• don’t show flow direction. Top-down is not standard, for example.
• don’t have rules as to where entry and exit points are located (top, sides).
• don’t reveal what, if anything, may be flowing along connector lines.
• don’t always display user paths.
• don’t put full information in boxes – often only one-word labels.
• don’t use direct-connected frames.

Avoid throwing user instructions ‘over the wall’ to whom they may concern.
Avoid one-way, truncated instructions. Design instructions so every available
scenario is obvious to users. Instructions that work can create confidence.

See instruction frames as describing two-way transactions. The idea of frames as
transactions was prompted by work by Hill [3] and Polovina [4]. Individual frames
can be understood as ideally containing two-way transactions between a system and
its users. Frames, as used here, seem to have no parallel in language. Since frames are
not word- or sentence-limited, they are not like phrases in language, music, and art.
Empty frames, like intersections, have no language counterpart. Frames can hold any
mix of sentences, phrases, formulas, symbols, different languages, music, images, etc.
While each frame prompts user action, a text sentence may carry no such implication.
This means text’s capacity for transaction territory-marking is about zero – or even
negative when arousing user ire.

 Helping System Users to Be Smarter by Representing Logic 463

Attach ‘local’ definitions of concepts to system user instructions. Such definitions
could include symbols and terms like: logic, system, content, scenario, system user
(who might be system designers; system architects; the client who pays to have the
system designed and maintained; the system inheritors; the system overseers; the
system accountants and bankers; the system managers the trainers of system
administrators – sometimes even the public. The opportunity for wrong assumptions
and confusion is real. Definitions demystify.

Emphasize user logic; soft-pedal system logic. Whilst describing to users what a
system is doing during its operation is common, it is often irrelevant. Users want just
whatever logic controls their success. Note that what is sequencing through user logic
structures is not information but rather the attention of the user. Meaning can arise
from seeing closely related alternative scenarios that may work better. Users prefer
the panorama of all scenario paths experts follow. Unfortunately, this contrasts with --
for just a few examples -- Microsoft’s Word 2003, Norton’s 2007 Internet Security,
Adobe’s Reader 7, and Google’s Desktop – none of which display any user scenarios
at all, let alone any panoramas.

4 Concluding Remarks

Given these experiences we suggest this direction for exploration:
What seems unavailable and urgently valuable is a computer capability with which

almost anyone can create and conveniently revise diagrams where contiguous logic
scenario panorama structure is retained automatically. This might be a program for
self-adjusting diagrams as simple as children’s hopscotch game diagrams with
automatic logic-rediagramming. Basing it on producing transaction frame FLIPP
Explainer diagrams is one obvious approach [1].

We accept that in this short paper we cannot properly convey the potential benefits,
other than highlighting some of the pertinent issues. We are nonetheless of the view
that our approach will provide users with a simple framework to tackle hitherto
complex real world problems. Its further exploration by a wider community would
therefore be well rewarded.

References

1. Cox, D.: Explanation by Pattern Means Massive Simplification (an E-book),
 http://www.flipp-explainers.org

2. Dau, F.: The Logic System of Concept Graphs with Negation: And Its Relationship to
Predicate Logic. In: Dau, F. (ed.) The Logic System of Concept Graphs with Negation.
LNCS (LNAI), vol. 2892, Springer, Heidelberg (2003)

3. Hill, R.: A Requirements Elicitation Framework for Agent-Oriented Software Engineering –
Doctoral dissertation. Sheffield Hallam University (2007)

4. Polovina, S., Hill, R.: Transactions Framework for Effective Enterprise Management. In:
ICCS 2007 Workshop Proceedings. Springer, Heidelberg (2007)

5. Text vs. patterns demonstration: http://www.flipp-explainers.org/demonstration.htm
6. Case study application: http://flipp-explainers.org/casestudy1.htm
7. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational

Foundations. Brooks Cole Publishing (2000)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

